Exact and fully symbolic verification of linear hybrid automata with large discrete state spaces
نویسندگان
چکیده
We propose an improved symbolic algorithm for the verification of linear hybrid automata with large discrete state spaces (where an explicit representation of discrete states is difficult). Here both the discrete part and the continuous part of the hybrid state space are represented by one symbolic representation called LinAIGs. LinAIGs represent (possibly non-convex) polyhedra extended by boolean variables. Key components of our method for state space traversal are redundancy elimination and constraint minimization: Redundancy elimination eliminates so-called redundant linear constraints from LinAIG representations by a suitable exploitation of the capabilities of SMT (Satisfiability Modulo Theories) solvers. Constraint minimization optimizes polyhedra by exploiting the fact that states already reached in previous steps can be interpreted as “don’t cares” in the current step. Experimental results (including comparisons to the state-of-the-art model checkers PHAVer and RED) demonstrate the advantages of our approach.
منابع مشابه
Exact State Set Representations in the Verification of Linear Hybrid Systems with Large Discrete State Space
We propose algorithms significantly extending the limits for maintaining exact representations in the verification of linear hybrid systems with large discrete state spaces. We use AND-Inverter Graphs (AIGs) extended with linear constraints (LinAIGs) as symbolic representation of the hybrid state space, and show how methods for maintaining compactness of AIGs can be lifted to support model-chec...
متن کاملGenerating Discrete Trace Transition System of a Polyhe-dral Invariant Hybrid Automaton
Supervisory control and fault diagnosis of hybrid systems need to have complete information about the discrete states transitions of the underling system. From this point of view, the hybrid system should be abstracted to a Discrete Trace Transition System (DTTS) and represented by a discrete mode transition graph. In this paper an effective method is proposed for generating discrete mode trans...
متن کاملSymbolic Verification of Hybrid Systems: An Algebraic Approach
In this paper we present a new symbolic, computer algebra based approach to hybrid systems. Hybrid systems are systems containing both, continuous and discrete changing quantities. As is commonly done, we model hybrid systems using hybrid automata. Hybrid automata extend the classical notion of finite state machines by combining differential equations to model the dynamic behavior of systems wi...
متن کاملSMT-Based Induction Methods for Timed Systems
Modeling time related aspects is important in many applications of verification methods. For precise results, it is necessary to interpret time as a dense domain, e.g. using timed automata as a formalism, even though the system’s resulting infinite state space is challenging for verification methods. Furthermore, fully symbolic treatment of both timing related and non-timing related elements of...
متن کاملFormal Verification of DEV&DESS Formalism Using Symbolic Model Checker HyTech
A hybrid system is a dynamical system reacting to continuous and discrete changes simultaneously. Many researchers have proposed modeling and verification formalisms for hybrid systems, but algorithmic verification of important properties such as safety and reachability is still an on-going research area. This paper demonstrates that a basic modeling formalism for hybrid systems, DEV&DESS is an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Sci. Comput. Program.
دوره 77 شماره
صفحات -
تاریخ انتشار 2012